Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Quantitative Biology ; 9(1):61-72, 2021.
Article in English | ProQuest Central | ID: covidwho-1876232

ABSTRACT

Background: A novel coronavirus (the SARS-CoV-2) has been identified in January 2020 as the causal pathogen for COVID-19 , a pandemic started near the end of 2019. The Angiotensin converting enzyme 2 protein (ACE2) utilized by the SARS-CoV as a receptor was found to facilitate the infection of SARS-CoV-2, initiated by the binding of the spike protein to human ACE2. Methods: Using homology modeling and molecular dynamics (MD) simulation methods, we report here the detailed structure and dynamics of the ACE2 in complex with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Results: The predicted model is highly consistent with the experimentally determined structures, validating the homology modeling results. Besides the binding interface reported in the crystal structures, novel binding poses are revealed from all-atom MD simulations. The simulation data are used to identify critical residues at the complex interface and provide more details about the interactions between the SARS-CoV-2 RBD and human ACE2. Conclusion: Simulations reveal that RBD binds to both open and closed state of ACE2. Two human ACE2 mutants and rat ACE2 are modeled to study the mutation effects on RBD binding to ACE2. The simulations show that the N-terminal helix and the K353 are very important for the tight binding of the complex, the mutants are found to alter the binding modes of the CoV2-RBD to ACE2.

2.
Biochem Biophys Res Commun ; 590: 34-41, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1588232

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns about reducing the efficacy of vaccines and neutralization antibodies due to its vast mutations. We have modelled the complex structure of the human ACE2 protein and the receptor binding domain (RBD) of Omicron Spike protein (S-protein), and conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron RBD binds more strongly to the human ACE2 protein than the original strain. The mutations at the ACE2-RBD interface enhance the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , Host-Pathogen Interactions , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL